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Replication Code for Figures in “A 
Practical Guide to Dealing with 
Attrition in Political Science 
Experiments” 
This version: January 2023 

rm(list=ls()) 

library(viridis) 

require(tidyverse) 

require(waffle) 

require(grid) 

require(ggpattern) 

require(ggpubr) 

require(devtools) 

 

#install our attritevis package 

install_github("lbassan/attritevis", dependencies = TRUE) 

library(attritevis) 

set.seed(12) 

 

#12 

Code to replicate figures from the paper A Practical Guide to Dealing with Attrition in Political Science 
Experiments by Lo, Renshon, and Bassan-Nygate (2023). 

1 Figure 1: 
Data frame lit_review.csv summarizes experimental paper published in JEPS and their discussion of 
attrition. Below we create the waffle figure. 

#Reading in CSV Data 

attrition <- read_csv("lit_review.csv") 
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#Functions to remove "*" and change "Yes" to 1 and "No" to 0 

remove_star <- function(x) { 

  return(str_extract(x, "Yes|No")) 

} 

 

yesno_onezero <- function(x) { 

  return(case_when(x == "Yes" ~ 1, 

                   x == "No" ~ 0)) 

} 

 

attrition <- attrition %>%  

  mutate_at(c(7:14), remove_star) %>% 

  mutate_at(c(7:14), yesno_onezero) 

 

 

#Creating table of proportions 

prop_att <- mean(attrition$Attrition) 

prop_noatt <- mean(attrition$`0 Attrition`[attrition$Attrition == 1]) 

prop_attdv <- mean(attrition$`Response Rate DV`[attrition$Attrition == 1]) 

prop_quan <- mean(attrition$`Quantified Attrition`[attrition$Attrition == 1 & attrition$`0 
Attrition` == 0 & attrition$`Response Rate DV` == 0]) 

prop_adj <- mean(attrition$`Sample Adjustments`[attrition$Attrition == 1 & attrition$`0 At
trition` == 0 & attrition$`Response Rate DV` == 0]) 

 

attrition_summary <- as_tibble(data.frame( 

  c("Measurement", 

    "Proportion that mention attrition", 

    "Proportion \"no attrition\"", 

    "Proportion DV", 

    "Proportion quantify", 

    "Proportion adjust"), 

  c("Value", 

    prop_att, 

    prop_noatt, 

    prop_attdv, 

    prop_quan, 

    prop_adj) 
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)) 

 

 

#Creating variable for the waffle plot 

count <- attrition %>%  

  mutate(waffle = case_when(`Sample Adjustments` == 1 ~ "Attrition mentioned, quantified, 
analyzed", 

                            Attrition == 1 & `0 Attrition` == 0 & `Response Rate DV` == 0 
& `Sample Adjustments` == 0 & `Quantified Attrition` == 1 ~ "Attrition mentioned and quant
ified", 

                            Attrition == 1 & `0 Attrition` == 0 & `Response Rate DV` == 0 
& `Sample Adjustments` == 0 & `Quantified Attrition` == 0 ~ "Attrition mentioned only", 

                            `Response Rate DV` == 1 ~ "Attrition is DV", 

                            `0 Attrition` == 1 ~ "Attrition mentioned - none in study", 

                            Attrition == 0 ~ "No mention of attrition")) %>%  

  group_by(waffle) %>% 

  summarise(n = n()) 

 

#Reordering to make legend easier to read and plot look better 

count <- count[c(5,3,2,4,1,6),] 

 

#Creating waffle plot 

case_counts <- count$n 

names(case_counts) <- count$waffle 

 

plot1<-waffle(case_counts, colors = c( 

  "#fcba03", #For Attrition mentioned, quantified, analyzed 

  "#e8803f", #For Attrition mentioned and quantified 

  "#965ef7", #For Attrition mentioned, none in study 

  "#595959", #For Attrition mentioned only 

  "#5eccf7", #For Attrition is DV 

  "#ff6666"  #For No mention of attrition 

  )) + 

  theme(legend.key.size = unit(10, "mm"), legend.text = element_text(size = 12)) 

 

plot1 
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ggsave("Figures/plot1.png", 

       width = 7, height = 5, 

       plot1) 

2 Figure 3: 
Attrition timeline visualization, we rely on the attritevis package, presented in the paper. 

#Make toy plots for paper 
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require(ggpattern) 

 

#(a) Low Level Attrition 

#Attition post-treatment (throughout survey) 

n <- 1000 

df <- data.frame( 

Q1 = sample(c("Treatment", "Control"), n, rep = TRUE), #we will assume conditions are assi
gned when entering survey 

Q2 = sample(c(18:90), n, rep = TRUE), #age 

Q3 = sample(c("m", "f"), n, rep = TRUE, prob = c(0.55, 0.45)), #sex 

Q4 = sample(c(0,1), n, rep = TRUE))#other general pre-treatment questions 

df$Q5 = df$Q1 #at Q5 respondents are presented with treatment (say, vignette) 

df$Q6 = sample(c(0,1), n, rep = TRUE) #post treatment questions 

df$Q7 = sample(c(0,1), n, rep = TRUE) 

df$Q8 = sample(c(0,1), n, rep = TRUE) 

df$Q9 = sample(c(0,1), n, rep = TRUE) 

df$Q10 = sample(c(0,1), n, rep = TRUE) 

 

df_a<-df 

 

#Generate attrition post 

invisible( 

sapply(sample(1:nrow(df_a), 200),function(x) { 

    a <- sample(2:10,1) 

    df_a[x,a:ncol(df_a)] <<- NA 

} 

)) 

 

 

#generate plot (a) 

a<- attritevis::plot_attrition(data=df_a, 

                  freq = FALSE, 

              treatment_q = "Q1", 

              outcome_q =  c("Q6", "Q7"), 

              title = "(a) Low Level Attrition", 

              mycolors = c(Control="#000066", 

                           Treatment = "#CC0033"), 
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              total = FALSE, 

              tline = FALSE) 

 

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this 

 

a<-a + geom_vline(xintercept = 5, 

                    color = "black", 

                    size = 1)+ 

 

      annotate(geom = "text", 

               label = "Treatment Given", 

               x = 5, 

               y = 0.5, 

               color = "black", 

               angle = 90, 

               vjust = 1.5) 

a 

 

#(b) Pre-treatment Attrition 

df_b<-df 

#Generate attrition pre-treatment 

invisible( 

sapply(sample(1:nrow(df_b), 700),function(x) { 

    a <- sample(2:4,1) 

    df_b[x,a:ncol(df_b)] <<- NA 

} 

)) 

 

 

#generate plot (b) 

b<-attritevis::plot_attrition(data=df_b, 

                  freq = FALSE, 

              treatment_q = "Q1", 

              outcome_q =  c("Q6", "Q7"), 

              title = "(b) Pre-treatment Attrition", 

              mycolors = c(Control="#000066", 

                           Treatment = "#CC0033"), 
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              tline = FALSE, 

              total = FALSE 

              ) 

 

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this 

 

b<-b + geom_vline(xintercept = 5, 

                    color = "black", 

                    size = 1) + 

 

      annotate(geom = "text", 

               label = "Treatment Given", 

               x = 5, 

               y = 0.5, 

               color = "black", 

               angle = 90, 

               vjust = 1.5) 

b 

 

#(c) Post-treatment Attrition (immediate) 

df_c<-df 

 

#First, we generate some general attrition at treatment 

invisible( 

sapply(sample(1:nrow(df_c), 410, 0.8*nrow(df_c)),function(x) { 

    a <- sample(5:6,1) 

    df_c[x,a:ncol(df_c)] <<- NA 

} 

)) 

 

#second, we add some attrition that's correlated with the treatment 

#specifically, we want to demonstrate attrition that happens at a certain time  

#to do so, we add a running var that will demonstrate time 

df_c$no<-rownames(df_c) 

df_c$Q6<-ifelse(df_c$Q1=="Treatment"&(df_c$no>115&df_c$no<373), NA,df_c$Q6) 

df_c$Q7<-ifelse(is.na(df_c$Q6),NA,df_c$Q7) 

df_c$Q8<-ifelse(is.na(df_c$Q6),NA,df_c$Q8) 
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df_c$Q9<-ifelse(is.na(df_c$Q6),NA,df_c$Q9) 

df_c$Q10<-ifelse(is.na(df_c$Q6),NA,df_c$Q10) 

 

df_c$no<-NULL 

 

c<-attritevis::plot_attrition(data=df_c, 

                  freq = FALSE, 

              treatment_q = "Q1", 

              outcome_q =  c("Q6", "Q7"), 

              title = "(c) Post-treatment Attrition (immediate)", 

              mycolors = c(Control="#000066", 

                           Treatment = "#CC0033"), 

              tline = FALSE, 

              total = FALSE) 

 

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this 

 

c<-c + geom_vline(xintercept = 5, 

                    color = "black", 

                    size = 1) + 

 

      annotate(geom = "text", 

               label = "Treatment Given", 

               x = 5, 

               y = 0.5, 

               color = "black", 

               angle = 90, 

               vjust = 1.5) 

c 

 

#(d) Post-treatment Attrition (prolonged) 

df_d<-df 

#Generate attrition at DV + after 

invisible( 

sapply(sample(1:nrow(df_d), 700),function(x) { 

    a <- sample(6:10,1) 

    df_d[x,a:ncol(df_d)] <<- NA 
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} 

)) 

 

 

d<-attritevis::plot_attrition(data=df_d, 

                  freq = FALSE, 

              treatment_q = "Q1", 

              outcome_q =  c("Q6", "Q7"), 

              title = "(d) Post-treatment Attrition (prolonged)", 

              mycolors = c(Control="#000066", 

                           Treatment = "#CC0033"), 

              tline = FALSE, 

              total = FALSE 

              ) 

 

 

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this 

 

d<-d + geom_vline(xintercept = 5, 

                    color = "black", 

                    size = 1) + 

 

      annotate(geom = "text", 

               label = "Treatment Given", 

               x = 5, 

               y = 0.5, 

               color = "black", 

               angle = 90, 

               vjust = 1.5) 

d 

 

require(grid) 

#save all plots in one figure 

 

plot2 <- ggarrange(a + rremove("ylab") + rremove("xlab"), b + rremove("ylab")  

                    + rremove("xlab"), c + rremove("ylab") + rremove("xlab"),  

                    d + rremove("ylab") + rremove("xlab"), # remove axis labels from plots 
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                    labels = NULL, 

                    ncol = 2, nrow = 2, 

                    common.legend = TRUE, legend = "top", 

                    align = "hv",  

                    font.label = list(size = 10, color = "black", face = "bold",  

                                      family = NULL, position = "top")) 

 

  annotate_figure(plot2, left = textGrob("Proportion of attrited", rot = 90, vjust = 1, gp 
= gpar(cex = 1.5)), 

                    bottom = textGrob("Experiment Questions", gp = gpar(cex = 1.5))) 

 

ggsave("Figures/plot2.png", 

       width = 10, 
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       height = 7, 

       plot2) 

3 Figure 4: 
Vis miss plot. 

plot3<- attritevis::vis_miss_treat(data=df_c, 

               treatment = "Q5") 
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ggsave("Figures/plot3.png",plot3) 

 

 

attritevis Package: An R Vignette 
This version: January 2023 

1 Introduction 
Attrition, the loss of study units from a sample, can often occur throughout an experimental study and 
at times pose a threat to inference. There are several studies, and accompanying R packages, that 
provide ex-post solutions to missingness such as double-sampling or extreme bounds. We provide a 
visually based guidance to assessing the types of missingness a study may have with a particular eye 
towards experimental and design adjustments a researcher can make after piloting a study. 

2 Usage 
• Visualizing survey attrition across treatment condition and over-time. 
• Utilizing and comparing balance tests at precise moments in the survey. 
• Incorporating estimation and visualization of Manski bounds for studies suffering from 

problematic attrition. 

3 Assumptions 
• Data must be ordered by survey questions, i.e. if respondents answered Q1 before Q2, the 

variable Q1 must appear before Q2 (i.e. in an earlier column) in the dataframe. 
• When attrition is defined as completely leaving the survey. Hence, when attrition is reported in 

the package it does not count skippers, i.e. respondents who skipped a question(s) but 
continued later in the survey, as attrited. In the function plot_attrition users can count 
skippers by setting y = “responded”. 

• For balance tests, treatment and control conditions must be defined. 

4 Functions 

4.1 attrition() 
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4.1.1 Description 
• Converts survey data into a frame that includes: 

o attrited – how many respondents attrited (left the survey) at each question. 
o proportion – number of attrited respondents / number of respondents who entered 

survey. 
o prop_q – number of attrited respondents / number of respondents entering into the 

question. - questions – question names. 
o responded – how many respondents responded in each question. 
o prop_r – number of respondents who responded / number of respondents who entered 

survey. 

4.1.2 Arguments 

• data - a data.frame where variables are ordered by survey questions, such that earlier survey 
questions appear in smaller valued columns. 

4.2 attrition_table() 

4.2.1 Description 

• Yields same data.frame as function attrition, but converts it into a table. Allows to subset 
table by treatment and control groups, which yields several tables by condition. 

4.2.2 Arguments 

• data - a data.frame where variables are ordered by survey questions, such that earlier survey 
questions appear in smaller valued columns. 

• treatment_q - a string character that corresponds to treatment variable. When specified, the 
function yields several tables by condition. 

4.3 plot_attrition() 

4.3.1 Description 

• Plots attrition or response in survey data over time. 

4.3.2 Arguments 
*data must be data.frame. Note that this function works only if the order of variables = order of 
questions in the survey. Users must remove irrelevant observations, for instance individuals who did 
not meet quotas, so as not to confuse them with attrited respondents. Note that using the qualtrics 
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embedded data feature users can note which respondents failed an attention check or were removed 
since they did not meet a quota. 

*y is a character that corresponds to the Y axis. When y = attrited, attrition is plotted. When y= 
responded responses are plotted. Default is y = attrited. 

*freq is a logical argument that notes whether Y axis is a raw number or a proportion. Default is 
freq=TRUE, which is the frequency of attrited OR responded respondents. When freq=FALSE Y axis is 
the proportion of total N (attrited OR responded), calculated as number of attrited OR responded 
divided by the number of respondents entering into the question. 

*treatment_q is a character of name(s) of question(s) in which treatments were administered. Marked 
in the plot with a red vertical line. 

*outcome_q is a character of name(s) of outcome question(s). Marked in the plot with a blue vertical 
line. 

*mycolors is a character of color names to be used as values in scale_colour_manual argument in 
ggplot. Default is mycolors=NULL, which defaults to greyscale. mycolors must be == length of the 
unique values of the treatment_q variable. To use this argument, users should specify which color 
corresponds to which factor (for example, treatment = "red"). 

*title is a character to be used for plot title. 

*total is a logical argument that notes whether the total # of attrited/responded is plotted. Default is 
TRUE. Argument can be changed to FALSE only when treatment_q is full. 

*tline is a logical argument that allows users to remove treatment vline, default is tline=TRUE. 

*outcomeline is a logical argument that allows users to remove outcome vlines, default is 
outcomeline=TRUE. 

4.4 balance_cov() 

4.4.1 Description 

• Tests whether specified covariates are balanced across specified treatment and control groups. 
Output is a t-test if covariate is a numeric or integer, and a 2-sample proportion test if covariate 
is a factor. 

4.4.2 Arguments 

• data - a data.frame, from which treatment and question are taken. 
• treatment - a string character that corresponds to the name of the treatment variable. Note 

that values of said variable must be specified as treatment and control. 
• question - a string character that corresponds to the name of the point in survey (question), 

for which balance test is required. 
• factor - logical argument that specifies whether question is a factor. Default is factor = 

FALSE (i.e. question is a numeric or integer). 
• factor_name - character that corresponds to specific factor (i.e. female), if question is a factor 

(i.e. sex). 
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• p_adjust - Vector of numbers that correspond to p-values obtained in all tests. Use this to 
adjust for p-values if running multiple tests. 

4.5 balance_attrite() 

4.5.1 Description 

• Tests whether specified treatment causes attrition in a specified question. Output is a logistic 
regression, regressing attrition (remain in survey=0, attrited=1) over specified treatment. 

4.5.2 Arguments 

• data - a data.frame, from which treatment and question are taken. 
• treatment - a string character that corresponds to the name of the treatment variable. Note 

that values of said variable must be specified as treatment and control. 
• question - a string character that corresponds to the name of the point in survey (question), 

for which balance test is required. 

4.6 bounds() 

4.6.1 Description 

• Yields extreme (Manski) bounds or trimming (Lee) bounds, using the attrition package by 
Alex Coppock. 

4.6.2 Arguments 

• data - a data.frame, from which treatment and DV are taken. 
• treatment - a string character that corresponds to the name of the treatment variable. Note 

that values of said variable must be specified as treatment and control. 
• DV - a string character that corresponds to the name of the outcome variable. 
• type - character that corresponds to the type of bounds required ("Manski" or "Lee"). Default 

is type = "Manski". 

4.7 vis_miss_treat() 

4.7.1 Description 

• Calls the vis_miss function from visdat package. We allow users to facet missingness by 
conditions, creating several missingness maps per condition. 



 

 16 

4.7.2 Arguments 

• data - a data.frame. 
• treatment_q - a string character that corresponds to the name of the treatment variable. If 

treatment_q = NULL, missingness map appears for all data, when treatment_q is not NULL, 
missingness is faceted by condition. 

5 Example 
Let’s begin demonstrating the uses of attritevis, with a working example. We begin by installing the 
package. 

We load test data from Lo, Renshon, and Bassan-Nygate 2021 (study 5B) which is an experimental 
survey study on whether peer-praise can encourage respondents to choose an empathy task. 

The experiment manipulates peer-praise and measures empathy in a behavioral task. There are two 
arms in the peer-praise randomization: peer-praise and no praise (control). In the first arm, a word 
cloud of praise, drawn from real praise collected in a pilot study, is given for people who behave 
empathetically, with a line of text about peer group average thermometer ratings towards people who 
are empathetic – “Peers of yours on this platform have said they hold favorable feelings towards 
people who engage in empathetic behavior, with an average of 7.9, on a scale of 0 (least favorable) to 
10 (most favorable), That same peer group provided real feedback for empathetic behavior which is 
pictured in the word cloud below”. The word cloud is presented in figure 1. Respondents in the control 
condition do not receive any additional information. 

 
Figure 1: Word cloud of real praise presented to treated respondents.  
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Our outcome of interest is choosing to empathize with an image in a behavioral task. In the task, 
subjects choose between two “cards” a FEEL and a DESCRIBE task, that correspond to an empathy or 
objective task, in which they empathize/describe an image of a man. The cards are presented in figure 
2. Below is a description of the survey, with information on the various variables collected. 

 
Figure 2: Choice task FEEL and DESCRIBE cards.  

After answering pre-treatment covariates, respondents in the study were asked to complete two 
practice rounds of the main empathy task. After completing the practice rounds, respondents 
complete three trials of the above mentioned tasks. Before each task, respondents are randomized 
into treatment and control groups. Treated respondents received the light-touch peer-praise 
treatment. During each trial, before respondents select between the FEEL and DESCRIBE tasks, 
happiness, the hypothesized mechanism, is measured. Treatment variables are labeled treat1, treat2, 
etc. Outcome variables, which are the choice-task card questions, are labeled card1, card2, etc. 
Mediators, which are measures of the emotion happiness, are labeled Happy_1_1, Happy_1_2… 
Happy_2_1, Happy_2_2… Happy_3_1, Happy_3_1, etc. After respondents complete all three trials post-
task and post-treatment covariates are collected. Importantly, the dataframe test_data is organized 
based on the survey questions order. That is, if Q1 came before Q2 in the survey, the variable Q1 
comes before the variable Q2 in the dataframe. 

After loading the test data and ensuring that variables are ordered by survey questions, we may want 
to transform our dataframe to an attrition dataframe, using the function attrition. 

5.1 Attrition dataframe 
attrition_data <- attritevis::attrition(test_data) 

This function creates a frame that indicates, per question: 



 

 18 

- `attrited` -- how many respondents attrited (left the survey) at each question.  

- `proportion` -- number of attrited respondents / number of respondents who entered surve
y. 

- `prop_q` -- number of attrited respondents / number of respondents entering into the que
stion.     - `questions` -- question names. 

- `responded` -- how many respondents responded in each question. 

- `prop_r` -- number of respondents who responded / number of respondents who entered surv
ey. 

Using base R we can explore how many people attrited overall, and what proportion of the general 
population this is. 

sum(attrition_data$attrited) #How many respondents attrited overall? 

## [1] 129 

sum(attrition_data$attrited)/nrow(test_data) #What proportion of the overall sample is thi
s? (0.21) 

## [1] 0.2067308 

Next, we can look at specific variables, and learn whether respondents attrited. Let’s choose the 
variable cards_a to demonstrate. This is a variable that notes whether respondents clicked the “FEEL” 
or “DESCRIBE” button during their first practice round. Using base R we can extract the number of 
attrited respondents, as well as the proportion of total N attrited, for this question. 

attrition_data[attrition_data$questions == 'cards_a', 'attrited'] 

## [1] 37 

attrition_data[attrition_data$questions == 'cards_a', 'proportion'] 

## [1] 0.06 

We learn that at the question cards_a 37 respondents attrited from the survey. This is equivalent to 
6% of the number of respondents who entered the survey at this question. Is this a lot though? Where 
else do we see attrition in the study? To assess, we visualize attrition across the survey timeline. 

5.2 Attrition table 
We can further create that of this dataframe using the function attrition_table. 

attritevis::attrition_table(test_data) 

attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  consent  624  1.00  
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attrited  prop_q  proportion  questions  responded  prop_r  

3  0.00  0.00  age  621  1.00  

0  0.00  0.00  sex  618  0.99  

0  0.00  0.00  education  621  1.00  

0  0.00  0.00  state  621  1.00  

0  0.00  0.00  income  621  1.00  

0  0.00  0.00  part_id  621  1.00  

0  0.00  0.00  race  621  1.00  

0  0.00  0.00  religion  621  1.00  

1  0.00  0.00  attrition_1  620  0.99  

6  0.01  0.01  attrition_2  614  0.98  

37  0.06  0.06  cards_a  577  0.92  

0  0.00  0.00  pa  553  0.89  

0  0.00  0.00  pb_1  536  0.86  

0  0.00  0.00  pb_2  536  0.86  

0  0.00  0.00  pb_3  536  0.86  

0  0.00  0.00  pc  534  0.86  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  cards_b  534  0.86  

0  0.00  0.00  p2a  522  0.84  

0  0.00  0.00  p2b_1  515  0.83  

0  0.00  0.00  p2b_2  515  0.83  

0  0.00  0.00  p2b_3  515  0.83  

0  0.00  0.00  p2c  515  0.83  

0  0.00  0.00  treat1  577  0.92  

0  0.00  0.00  Happy_1_1  514  0.82  

0  0.00  0.00  Happy_1_2  514  0.82  

0  0.00  0.00  Happy_1_3  514  0.82  

0  0.00  0.00  cards1  505  0.81  

0  0.00  0.00  X1a  502  0.80  

0  0.00  0.00  X1b_1  502  0.80  

0  0.00  0.00  X1b_2  502  0.80  

0  0.00  0.00  X1b_3  502  0.80  

0  0.00  0.00  X1c  502  0.80  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  treat2  577  0.92  

0  0.00  0.00  Happy_2_1  502  0.80  

0  0.00  0.00  Happy_2_2  502  0.80  

0  0.00  0.00  Happy_2_3  502  0.80  

0  0.00  0.00  cards2  500  0.80  

0  0.00  0.00  X2a  498  0.80  

0  0.00  0.00  X2b_1  497  0.80  

0  0.00  0.00  X2b_2  497  0.80  

0  0.00  0.00  X2b_3  497  0.80  

0  0.00  0.00  X2c  497  0.80  

0  0.00  0.00  treat3  577  0.92  

80  0.14  0.13  Happy_3_1  497  0.80  

0  0.00  0.00  Happy_3_2  497  0.80  

0  0.00  0.00  Happy_3_3  497  0.80  

0  0.00  0.00  cards3  497  0.80  

0  0.00  0.00  X3a  497  0.80  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  X3b_1  497  0.80  

0  0.00  0.00  X3b_2  497  0.80  

0  0.00  0.00  X3b_3  497  0.80  

0  0.00  0.00  post1  491  0.79  

0  0.00  0.00  post2_7  497  0.80  

0  0.00  0.00  post3  497  0.80  

0  0.00  0.00  post4  497  0.80  

0  0.00  0.00  post5  496  0.79  

0  0.00  0.00  post6  497  0.80  

1  0.00  0.00  post7  496  0.79  

0  0.00  0.00  post8  496  0.79  

0  0.00  0.00  post9  496  0.79  

0  0.00  0.00  post10  496  0.79  

0  0.00  0.00  post11_1  496  0.79  

0  0.00  0.00  post11_8  496  0.79  

1  0.00  0.00  post13_1  495  0.79  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  post14_1  495  0.79  

0  0.00  0.00  post15_1  493  0.79  

0  0.00  0.00  post16_1  494  0.79  

0  0.00  0.00  post17  495  0.79  

0  0.00  0.00  ideology  495  0.79  

0  0.00  0.00  trump_approval  495  0.79  

0  0.00  0.00  pres_approval  495  0.79  

We can also use the argument treatment_q to facet attrition table by condition. This is a character that 
corresponds to a specific variable, which is where the treatment conditions were administered. 

attritevis::attrition_table(data= test_data, 

                treatment_q = "treat1" 

                ) 

[[1]]  

attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  control.consent  289  1.00  

0  0.00  0.00  control.age  289  1.00  

0  0.00  0.00  control.sex  287  0.99  

0  0.00  0.00  control.education  289  1.00  

0  0.00  0.00  control.state  289  1.00  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  control.income  289  1.00  

0  0.00  0.00  control.part_id  289  1.00  

0  0.00  0.00  control.race  289  1.00  

0  0.00  0.00  control.religion  289  1.00  

0  0.00  0.00  control.attrition_1  289  1.00  

0  0.00  0.00  control.attrition_2  289  1.00  

0  0.00  0.00  control.cards_a  289  1.00  

0  0.00  0.00  control.pa  278  0.96  

0  0.00  0.00  control.pb_1  270  0.93  

0  0.00  0.00  control.pb_2  270  0.93  

0  0.00  0.00  control.pb_3  270  0.93  

0  0.00  0.00  control.pc  268  0.93  

0  0.00  0.00  control.cards_b  268  0.93  

0  0.00  0.00  control.p2a  262  0.91  

0  0.00  0.00  control.p2b_1  260  0.90  

0  0.00  0.00  control.p2b_2  260  0.90  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  control.p2b_3  260  0.90  

0  0.00  0.00  control.p2c  260  0.90  

0  0.00  0.00  control.cond_new  289  1.00  

0  0.00  0.00  control.Happy_1_1  260  0.90  

0  0.00  0.00  control.Happy_1_2  260  0.90  

0  0.00  0.00  control.Happy_1_3  260  0.90  

0  0.00  0.00  control.cards1  251  0.87  

0  0.00  0.00  control.X1a  249  0.86  

0  0.00  0.00  control.X1b_1  249  0.86  

0  0.00  0.00  control.X1b_2  249  0.86  

0  0.00  0.00  control.X1b_3  249  0.86  

0  0.00  0.00  control.X1c  249  0.86  

0  0.00  0.00  control.treat2  289  1.00  

0  0.00  0.00  control.Happy_2_1  249  0.86  

0  0.00  0.00  control.Happy_2_2  249  0.86  

0  0.00  0.00  control.Happy_2_3  249  0.86  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  control.cards2  248  0.86  

0  0.00  0.00  control.X2a  246  0.85  

0  0.00  0.00  control.X2b_1  246  0.85  

0  0.00  0.00  control.X2b_2  246  0.85  

0  0.00  0.00  control.X2b_3  246  0.85  

0  0.00  0.00  control.X2c  246  0.85  

0  0.00  0.00  control.treat3  289  1.00  

43  0.15  0.15  control.Happy_3_1  246  0.85  

0  0.00  0.00  control.Happy_3_2  246  0.85  

0  0.00  0.00  control.Happy_3_3  246  0.85  

0  0.00  0.00  control.cards3  246  0.85  

0  0.00  0.00  control.X3a  246  0.85  

0  0.00  0.00  control.X3b_1  246  0.85  

0  0.00  0.00  control.X3b_2  246  0.85  

0  0.00  0.00  control.X3b_3  246  0.85  

0  0.00  0.00  control.post1  244  0.84  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  control.post2_7  246  0.85  

0  0.00  0.00  control.post3  246  0.85  

0  0.00  0.00  control.post4  246  0.85  

0  0.00  0.00  control.post5  246  0.85  

0  0.00  0.00  control.post6  246  0.85  

0  0.00  0.00  control.post7  246  0.85  

0  0.00  0.00  control.post8  246  0.85  

0  0.00  0.00  control.post9  246  0.85  

0  0.00  0.00  control.post10  246  0.85  

0  0.00  0.00  control.post11_1  246  0.85  

0  0.00  0.00  control.post11_8  246  0.85  

0  0.00  0.00  control.post13_1  246  0.85  

0  0.00  0.00  control.post14_1  246  0.85  

0  0.00  0.00  control.post15_1  244  0.84  

0  0.00  0.00  control.post16_1  245  0.85  

0  0.00  0.00  control.post17  246  0.85  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  control.ideology  246  0.85  

0  0.00  0.00  control.trump_approval  246  0.85  

0  0.00  0.00  control.pres_approval  246  0.85  

[[2]]  

attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  treatment.consent  288  1.00  

0  0.00  0.00  treatment.age  288  1.00  

0  0.00  0.00  treatment.sex  288  1.00  

0  0.00  0.00  treatment.education  288  1.00  

0  0.00  0.00  treatment.state  288  1.00  

0  0.00  0.00  treatment.income  288  1.00  

0  0.00  0.00  treatment.part_id  288  1.00  

0  0.00  0.00  treatment.race  288  1.00  

0  0.00  0.00  treatment.religion  288  1.00  

0  0.00  0.00  treatment.attrition_1  288  1.00  

0  0.00  0.00  treatment.attrition_2  288  1.00  

0  0.00  0.00  treatment.cards_a  288  1.00  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  treatment.pa  275  0.95  

0  0.00  0.00  treatment.pb_1  266  0.92  

0  0.00  0.00  treatment.pb_2  266  0.92  

0  0.00  0.00  treatment.pb_3  266  0.92  

0  0.00  0.00  treatment.pc  266  0.92  

0  0.00  0.00  treatment.cards_b  266  0.92  

0  0.00  0.00  treatment.p2a  260  0.90  

0  0.00  0.00  treatment.p2b_1  255  0.89  

0  0.00  0.00  treatment.p2b_2  255  0.89  

0  0.00  0.00  treatment.p2b_3  255  0.89  

0  0.00  0.00  treatment.p2c  255  0.89  

0  0.00  0.00  treatment.cond_new  288  1.00  

0  0.00  0.00  treatment.Happy_1_1  254  0.88  

0  0.00  0.00  treatment.Happy_1_2  254  0.88  

0  0.00  0.00  treatment.Happy_1_3  254  0.88  

0  0.00  0.00  treatment.cards1  254  0.88  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  treatment.X1a  253  0.88  

0  0.00  0.00  treatment.X1b_1  253  0.88  

0  0.00  0.00  treatment.X1b_2  253  0.88  

0  0.00  0.00  treatment.X1b_3  253  0.88  

0  0.00  0.00  treatment.X1c  253  0.88  

0  0.00  0.00  treatment.treat2  288  1.00  

0  0.00  0.00  treatment.Happy_2_1  253  0.88  

0  0.00  0.00  treatment.Happy_2_2  253  0.88  

0  0.00  0.00  treatment.Happy_2_3  253  0.88  

0  0.00  0.00  treatment.cards2  252  0.88  

0  0.00  0.00  treatment.X2a  252  0.88  

0  0.00  0.00  treatment.X2b_1  251  0.87  

0  0.00  0.00  treatment.X2b_2  251  0.87  

0  0.00  0.00  treatment.X2b_3  251  0.87  

0  0.00  0.00  treatment.X2c  251  0.87  

0  0.00  0.00  treatment.treat3  288  1.00  
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attrited  prop_q  proportion  questions  responded  prop_r  

37  0.13  0.13  treatment.Happy_3_1  251  0.87  

0  0.00  0.00  treatment.Happy_3_2  251  0.87  

0  0.00  0.00  treatment.Happy_3_3  251  0.87  

0  0.00  0.00  treatment.cards3  251  0.87  

0  0.00  0.00  treatment.X3a  251  0.87  

0  0.00  0.00  treatment.X3b_1  251  0.87  

0  0.00  0.00  treatment.X3b_2  251  0.87  

0  0.00  0.00  treatment.X3b_3  251  0.87  

0  0.00  0.00  treatment.post1  247  0.86  

0  0.00  0.00  treatment.post2_7  251  0.87  

0  0.00  0.00  treatment.post3  251  0.87  

0  0.00  0.00  treatment.post4  251  0.87  

0  0.00  0.00  treatment.post5  250  0.87  

0  0.00  0.00  treatment.post6  251  0.87  

1  0.00  0.00  treatment.post7  250  0.87  

0  0.00  0.00  treatment.post8  250  0.87  
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attrited  prop_q  proportion  questions  responded  prop_r  

0  0.00  0.00  treatment.post9  250  0.87  

0  0.00  0.00  treatment.post10  250  0.87  

0  0.00  0.00  treatment.post11_1  250  0.87  

0  0.00  0.00  treatment.post11_8  250  0.87  

1  0.00  0.00  treatment.post13_1  249  0.86  

0  0.00  0.00  treatment.post14_1  249  0.86  

0  0.00  0.00  treatment.post15_1  249  0.86  

0  0.00  0.00  treatment.post16_1  249  0.86  

0  0.00  0.00  treatment.post17  249  0.86  

0  0.00  0.00  treatment.ideology  249  0.86  

0  0.00  0.00  treatment.trump_approval  249  0.86  

0  0.00  0.00  treatment.pres_approval  249  0.86  

5.3 Visualizing attrition 

5.3.1 Attrition timeline 
We may want to visualize attrition across the survey, to look at all the survey questions at once. The 
function plot_attrition allows us to plot attrition across survey questions, indicating where 
treatment and outcome questions were collected. 

There are several ways in which users can use this function. Simply plugging in the dataset into the 
function yields a figure that plots the number of respondents that attrited (left the survey completely) 
over each question in the study. 
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attritevis::plot_attrition(test_data)   

 

When users specify freq=FALSE, the y axis plots the proportion of attrited. 

attritevis::plot_attrition(test_data, 

              freq=FALSE)   
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Users can further specify y="resonded" to account for response, rather than attrition. This argument 
can be used with either freq=TRUE (default), or freq=FALSE, plotting response or proportion of 
responded, accordingly. 

attritevis::plot_attrition(test_data, 

              y="responded")   
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Using the outcome_q argument, users can specify where outcome questions were measure. These are 
noted with gray vertical lines. 

attritevis::plot_attrition(test_data, 

              outcome_q = c("cards1", "cards2",  "cards3"))   
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When treatment_q, which corresponds to treatment variable, is not NULL, the plot both notes where 
treatment was collected with a vertical line, and breaks down attrition by treatment conditions. 

attritevis::plot_attrition(test_data, 

              y = "responded", 

              outcome_q = c("cards1", "cards2",  "cards3"), 

              treatment_q = "treat1") 
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Color default is greyscale, but users can use the mycolors argument to specify which colors they want 
to use to mark each conditions’ geom_line. The length of mycolors must be equal to the length of 
unique(treatment_q). To use this argument, users should specify which color corresponds to which 
factor. See below the running example: 

attritevis::plot_attrition(test_data, 

              y = "responded", 

              outcome_q = c("cards1", "cards2",  "cards3"), 

              treatment_q = "treat1", 

              mycolors = c(treatment = "#000066", 
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                           control = "#CC0033")) 

 

Finally, users can make manual changes to the plot by removing the Total line (using the argument 
total = FALSE), and by removing the treatment and/or outcome vertical lines (using tline=FALSE, 
and/or outcomeline=FALSE, respectively). Generally, we recommend keeping the Total line unless 
treatment is administered at with entrance to study. 

attritevis::plot_attrition(test_data, 

              y = "responded", 

              outcome_q = c("cards1", "cards2",  "cards3"), 

              treatment_q = "treat1", 
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              mycolors = c(treatment = "#000066", 

                           control = "#CC0033"), 

              total = FALSE, 

              outcomeline = FALSE, 

              tline = FALSE 

            ) 

 

5.3.2 Vis miss 
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Users can also visualize missingness with the vis_miss_treat() function that calls the vis_miss 
function from the visdat package. 

attritevis::vis_miss_treat(test_data) 

 

attritevis allows users to facet missingness by conditions, creating several missingness maps per 
condition, and marks treatment variable with a red vertical line. 

attritevis::vis_miss_treat(test_data, 

               treatment_q = "treat1") 
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5.4 Balance tests 
Once we have identified the specific survey points where attrition takes place, we want to conduct 
balance tests at these specific points to ensure balance across treatment and control, and learn if (and 
when) balance became an issue. We can do this using the functions balance_cov() and 
balance_attrite(). 

5.4.1 Balance across covariates 
Once we’ve identified whether (and when) attrition occurs in our survey, we want to know that our 
treatment and control groups are balanced across covariates throughout the survey, to detect 
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differential attrition. We can do this using the function balance_cov(), which we will demonstrate 
with three covariates: age, sex, and ideology. 

We begin with the covariate age, which was collected pretreatment and is a numeric variable. In order 
to use the function balance_cov() we must define treatment and control arms under the treatment 
variables. We define treat1 as the treatment variable, and age as the question. 

unique(test_data$treat1) 

## [1] "treatment" "control"   NA 

attritevis::balance_cov(data = test_data,  

        treatment = "treat1",  

        question = "age") 

##  

##  Welch Two Sample t-test 

##  

## data:  treat_data$question1 and control_data$question1 

## t = -0.32688, df = 568.57, p-value = 0.7439 

## alternative hypothesis: true difference in means is not equal to 0 

## 95 percent confidence interval: 

##  -2.002600  1.431137 

## sample estimates: 

## mean of x mean of y  

##  37.42361  37.70934 

The output is a t-test that determines whether there is a difference between the average age of the 
control group and the treatment group. We learn that age is balanced across treatment and control 
groups, with a mean of approximately 37.4 years old in treated respondents and 37.7 in controled 
respondents (p=0.7). 

We can also use the function balance_cov() when the covariate (question) is a factor, but we must 
specify which factor we are interested in. For example, let’s say we want to test whether at the 
question sex in the survey missingness created observable differences across treatment and control 
groups. Sex is a factor variable with two factors: female and male. We can look at whether the 
proportion of female still remains similar across groups. To do so, we must determine that factor = 
TRUE and specify the factor_name (in this case, female). 

attritevis::balance_cov(data = test_data,  

        treatment = "treat1",  

        question = "sex", 

        factor = TRUE, 

        factor_name = "female") 

##  

##  2-sample test for equality of proportions with continuity correction 
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##  

## data:  x out of n 

## X-squared = 1.1305, df = 1, p-value = 0.2877 

## alternative hypothesis: two.sided 

## 95 percent confidence interval: 

##  -0.12931498  0.03623038 

## sample estimates: 

##    prop 1    prop 2  

## 0.3576389 0.4041812 

The output is a 2-sample proportion test. We learn that sex is also balanced between treatment and 
control, with similar proportions of females across the groups (p=0.3). 

There are certain post-treatment variables for which we may want to ensure balance across treatment 
and control as well. Note, however, that these should be variables that we hypothesize would stay 
stable after treatment. For example, we occasionally include demographic questions at the end of the 
survey to avoid survey fatigue before treatments. In our running example, the ideology question was 
collected post-treatment, but we expect it to stay stable across treatment and control. 

attritevis::balance_cov(data = test_data,  

        treatment = "treat1",  

        question = "ideology") 

##  

##  Welch Two Sample t-test 

##  

## data:  treat_data$question1 and control_data$question1 

## t = 1.023, df = 492.91, p-value = 0.3068 

## alternative hypothesis: true difference in means is not equal to 0 

## 95 percent confidence interval: 

##  -0.1660012  0.5266633 

## sample estimates: 

## mean of x mean of y  

##  3.879518  3.699187 

If users run several balance tests, we recommend adjusting p-values. balance_cov allows users to do 
so by specifying the p-values of the tests they ran (p_adjust). 

In our running example, since we ran three balance tests (with ideology, sex, and age), we want to 
adjust our p-values: 

attritevis::balance_cov(data = test_data,  

        treatment = "treat1",  
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        question = "ideology", 

        p_adjust = c(0.7,0.3,0.3)) 

##  

##  Welch Two Sample t-test 

##  

## data:  treat_data$question1 and control_data$question1 

## t = 1.023, df = 492.91, p-value = 0.3068 

## alternative hypothesis: true difference in means is not equal to 0 

## 95 percent confidence interval: 

##  -0.1660012  0.5266633 

## sample estimates: 

## mean of x mean of y  

##  3.879518  3.699187 

Original_p….p_adjust  Adjusted_p….a  

0.7  0.70  

0.3  0.45  

0.3  0.45  

5.4.2 Balance across attrition 
Next, we can check whether our treatment is correlated with attrition at any moment in the survey. 
The balance_attrite() function converts the specified question into a binary variable such that 
attrition = 1, and remaining in survey = 0, and runs a lositic regression (regressing the specified 
question over the specified treatment) to examine whether treatment affects attrition. 

Using our visualization, we identified that attrition occurs at the post-treatment question Happy_3_1. 
We can use the function balance_attrite(), to examine whether our treatment caused attrition at 
this point in the survey: 

attritevis::balance_attrite(data = test_data,  

        treatment = "treat1",  

        question = "Happy_3_1") 

##  

## Call: 

## glm(formula = question1 ~ treatment1, family = binomial(link = "logit"),  



 

 45 

##     data = data2) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.5676  -0.5676  -0.5244  -0.5244   2.0259   

##  

## Coefficients: 

##                     Estimate Std. Error z value Pr(>|z|)     

## (Intercept)          -1.7441     0.1653 -10.552   <2e-16 *** 

## treatment1treatment  -0.1704     0.2415  -0.706     0.48     

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  

##     Null deviance: 464.49  on 576  degrees of freedom 

## Residual deviance: 463.99  on 575  degrees of freedom 

##   (47 observations deleted due to missingness) 

## AIC: 467.99 

##  

## Number of Fisher Scoring iterations: 4 

We learn that our treat1 does not affect attrition in variable Happy_3_1. 

6 Simulated data 
As we demonstrated above, attrition doesn’t seem to pose a threat to inference in our dataset. But 
what does it look like when attrition is an issue? We simulate attrition on test_data to demonstrate 
what this would look like. 

6.1 Treatment causes attrition 
In a toy example (test_sim), suppose respondents enter a survey (Q1-Q10), where treatment is 
assigned at “Q5”. We generate attrition such that treatment is causing respondents to drop out of the 
survey right after treatment. We might see something like this if respondents are particularly taxed by 
a treatment in the survey and therefore more likely to drop out after receiving treatment. 

6.1.1 Plot 
We visualize attrition using the plot_attrition() and vis_miss_treat() functions. 
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attritevis::plot_attrition(test_sim, 

              treatment_q = "Q5", 

              outcome_q = c("Q7", "Q8",  "Q9"), 

              freq = FALSE, 

              mycolors = c(treatment = "#000066", 

                           control = "#CC0033") 

              ) 
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attritevis::vis_miss_treat(test_sim, treatment_q = "Q5") 

 

We learn that attrition mostly occurs after Q6, and that treated respondents seem to be attriting more. 

6.1.2 Balance 
We learn that most respondents attrite at the post-treatment question Q6, and conduct a balance test. 
Note that Q6 is an outcome, and we expect our treatment to affect it. It thus does not make sense to 
use the balance_cov() function. Instead, we want to examine whether our treatment caused attrition, 
and thus use the function balance_attrite(): 
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attritevis::balance_attrite(data = test_sim,  

        treatment = "Q5",  

        question = "Q6") 

##  

## Call: 

## glm(formula = question1 ~ treatment1, family = binomial(link = "logit"),  

##     data = data2) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.5481  -0.5481  -0.2974  -0.2974   2.5062   

##  

## Coefficients: 

##                     Estimate Std. Error z value Pr(>|z|)     

## (Intercept)          -3.0964     0.2479 -12.489  < 2e-16 *** 

## treatment1treatment   1.2767     0.2888   4.421 9.82e-06 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  

##     Null deviance: 469.71  on 772  degrees of freedom 

## Residual deviance: 447.08  on 771  degrees of freedom 

##   (227 observations deleted due to missingness) 

## AIC: 451.08 

##  

## Number of Fisher Scoring iterations: 5 

We learn that treated respondents are more likely to attrite, treatment is positively associated with 
attrition and is statistically significant. 

6.1.3 Bounds 
Next, we use the function bounds() to to get extreme value (Manski) bounds. This function calls the 
function estimator_ev from the attrition package by Alex Coppock. treatment is the assignment 
indicator (Z). DV is the outcome of interest (Y). Our bounds() function removes respondents who 
attrited pre-treatment and calculates R (the respose indicator variable) based on missingness on the 
DV (missing=0, response=1), based on the assumptions drawn by Manski. 
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The default for the bounds type is type = "Manski", but we can also specify the type of bounds such 
that type = "Lee" to get Trimming (Lee) bounds. Since we cannot defy the monotonicity assumption, 
Lee bounds cannot be yielded here, however we demonstrate the use of type = "Lee" in the next 
section. 

6.2 Control causes attrition 
We repeat this process, but instead we look at a case where control causes attrition in test_sim2. We 
might see something like this if positive emotions (like happiness) are ramped up with treatment, 
making attrition less likely. 

6.2.1 Plot 
We visualize attrition using the plot_attrition() and vis_miss_treat() functions. 

attritevis::plot_attrition(test_sim2, 

              treatment_q = "Q5", 

              outcome_q = c("Q7", "Q8",  "Q9"), 

              freq = FALSE, 

              mycolors = c(treatment = "#000066", 

                           control = "#CC0033") 

              ) 
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attritevis::vis_miss_treat(test_sim2, treatment_q = "Q5") 
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We learn that attrition mostly occurs after Q6, and that treated respondents seem to be attriting more. 

6.2.2 Balance 
We learn that most respondents attrite at the post-treatment question Q6, and conduct a balance test. 
Note that Q6 is an outcome, and we expect our treatment to affect it. It thus does not make sense to 
use the balance_cov() function. Instead, we want to examine whether our treatment caused attrition, 
and thus use the function balance_attrite(): 

attritevis::balance_attrite(data = test_sim2,  

        treatment = "Q5",  
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        question = "Q6") 

##  

## Call: 

## glm(formula = question1 ~ treatment1, family = binomial(link = "logit"),  

##     data = data2) 

##  

## Deviance Residuals:  

##     Min       1Q   Median       3Q      Max   

## -0.5092  -0.5092  -0.3141  -0.3141   2.4633   

##  

## Coefficients: 

##                     Estimate Std. Error z value Pr(>|z|)     

## (Intercept)          -1.9775     0.1524 -12.974  < 2e-16 *** 

## treatment1treatment  -1.0071     0.2856  -3.526 0.000422 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## (Dispersion parameter for binomial family taken to be 1) 

##  

##     Null deviance: 456.45  on 776  degrees of freedom 

## Residual deviance: 442.62  on 775  degrees of freedom 

##   (223 observations deleted due to missingness) 

## AIC: 446.62 

##  

## Number of Fisher Scoring iterations: 5 

We learn that treated respondents are more likely to attrite, treatment is positively associated with 
attrition and is statistically significant. 

6.2.3 Bounds 
Next, we use the function bounds() to to get extreme value (Manski) bounds and lee sharp bounds. 

attritevis::bounds(data = test_sim2,  

       treatment = "Q5", 

       DV = "Q8") 

##     ci_lower     ci_upper      low_est      upp_est      low_var      upp_var  

## -0.296727542  0.310514515  0.006893486  0.006893486  0.023997584  0.023997584 

#lee sharp 



 

 53 

attritevis::bounds(data = test_sim2,  

       treatment = "Q5", 

       DV = "Q7", 

       type = "Lee") 

##     upper_bound     lower_bound       Out0_mono      Out1L_mono      Out1U_mono  

##      0.34041298      0.10240873      3.92625369      4.02866242      4.26666667  

## control_group_N   treat_group_N               Q              f1              f0  

##    339.00000000    327.00000000      0.03790379      0.12566845      0.15880893  

##          pi_r_1          pi_r_0  

##      0.87433155      0.84119107 


