

 1

Replication Code for Figures in “A
Practical Guide to Dealing with
Attrition in Political Science
Experiments”
This version: January 2023

rm(list=ls())

library(viridis)

require(tidyverse)

require(waffle)

require(grid)

require(ggpattern)

require(ggpubr)

require(devtools)

#install our attritevis package

install_github("lbassan/attritevis", dependencies = TRUE)

library(attritevis)

set.seed(12)

#12

Code to replicate figures from the paper A Practical Guide to Dealing with Attrition in Political Science
Experiments by Lo, Renshon, and Bassan-Nygate (2023).

1 Figure 1:
Data frame lit_review.csv summarizes experimental paper published in JEPS and their discussion of
attrition. Below we create the waffle figure.

#Reading in CSV Data

attrition <- read_csv("lit_review.csv")

 2

#Functions to remove "*" and change "Yes" to 1 and "No" to 0

remove_star <- function(x) {

 return(str_extract(x, "Yes|No"))

}

yesno_onezero <- function(x) {

 return(case_when(x == "Yes" ~ 1,

 x == "No" ~ 0))

}

attrition <- attrition %>%

 mutate_at(c(7:14), remove_star) %>%

 mutate_at(c(7:14), yesno_onezero)

#Creating table of proportions

prop_att <- mean(attrition$Attrition)

prop_noatt <- mean(attrition$`0 Attrition`[attrition$Attrition == 1])

prop_attdv <- mean(attrition$`Response Rate DV`[attrition$Attrition == 1])

prop_quan <- mean(attrition$`Quantified Attrition`[attrition$Attrition == 1 & attrition$`0
Attrition` == 0 & attrition$`Response Rate DV` == 0])

prop_adj <- mean(attrition$`Sample Adjustments`[attrition$Attrition == 1 & attrition$`0 At
trition` == 0 & attrition$`Response Rate DV` == 0])

attrition_summary <- as_tibble(data.frame(

 c("Measurement",

 "Proportion that mention attrition",

 "Proportion \"no attrition\"",

 "Proportion DV",

 "Proportion quantify",

 "Proportion adjust"),

 c("Value",

 prop_att,

 prop_noatt,

 prop_attdv,

 prop_quan,

 prop_adj)

 3

))

#Creating variable for the waffle plot

count <- attrition %>%

 mutate(waffle = case_when(`Sample Adjustments` == 1 ~ "Attrition mentioned, quantified,
analyzed",

 Attrition == 1 & `0 Attrition` == 0 & `Response Rate DV` == 0
& `Sample Adjustments` == 0 & `Quantified Attrition` == 1 ~ "Attrition mentioned and quant
ified",

 Attrition == 1 & `0 Attrition` == 0 & `Response Rate DV` == 0
& `Sample Adjustments` == 0 & `Quantified Attrition` == 0 ~ "Attrition mentioned only",

 `Response Rate DV` == 1 ~ "Attrition is DV",

 `0 Attrition` == 1 ~ "Attrition mentioned - none in study",

 Attrition == 0 ~ "No mention of attrition")) %>%

 group_by(waffle) %>%

 summarise(n = n())

#Reordering to make legend easier to read and plot look better

count <- count[c(5,3,2,4,1,6),]

#Creating waffle plot

case_counts <- count$n

names(case_counts) <- count$waffle

plot1<-waffle(case_counts, colors = c(

 "#fcba03", #For Attrition mentioned, quantified, analyzed

 "#e8803f", #For Attrition mentioned and quantified

 "#965ef7", #For Attrition mentioned, none in study

 "#595959", #For Attrition mentioned only

 "#5eccf7", #For Attrition is DV

 "#ff6666" #For No mention of attrition

)) +

 theme(legend.key.size = unit(10, "mm"), legend.text = element_text(size = 12))

plot1

 4

ggsave("Figures/plot1.png",

 width = 7, height = 5,

 plot1)

2 Figure 3:
Attrition timeline visualization, we rely on the attritevis package, presented in the paper.

#Make toy plots for paper

 5

require(ggpattern)

#(a) Low Level Attrition

#Attition post-treatment (throughout survey)

n <- 1000

df <- data.frame(

Q1 = sample(c("Treatment", "Control"), n, rep = TRUE), #we will assume conditions are assi
gned when entering survey

Q2 = sample(c(18:90), n, rep = TRUE), #age

Q3 = sample(c("m", "f"), n, rep = TRUE, prob = c(0.55, 0.45)), #sex

Q4 = sample(c(0,1), n, rep = TRUE))#other general pre-treatment questions

df$Q5 = df$Q1 #at Q5 respondents are presented with treatment (say, vignette)

df$Q6 = sample(c(0,1), n, rep = TRUE) #post treatment questions

df$Q7 = sample(c(0,1), n, rep = TRUE)

df$Q8 = sample(c(0,1), n, rep = TRUE)

df$Q9 = sample(c(0,1), n, rep = TRUE)

df$Q10 = sample(c(0,1), n, rep = TRUE)

df_a<-df

#Generate attrition post

invisible(

sapply(sample(1:nrow(df_a), 200),function(x) {

 a <- sample(2:10,1)

 df_a[x,a:ncol(df_a)] <<- NA

}

))

#generate plot (a)

a<- attritevis::plot_attrition(data=df_a,

 freq = FALSE,

 treatment_q = "Q1",

 outcome_q = c("Q6", "Q7"),

 title = "(a) Low Level Attrition",

 mycolors = c(Control="#000066",

 Treatment = "#CC0033"),

 6

 total = FALSE,

 tline = FALSE)

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this

a<-a + geom_vline(xintercept = 5,

 color = "black",

 size = 1)+

 annotate(geom = "text",

 label = "Treatment Given",

 x = 5,

 y = 0.5,

 color = "black",

 angle = 90,

 vjust = 1.5)

a

#(b) Pre-treatment Attrition

df_b<-df

#Generate attrition pre-treatment

invisible(

sapply(sample(1:nrow(df_b), 700),function(x) {

 a <- sample(2:4,1)

 df_b[x,a:ncol(df_b)] <<- NA

}

))

#generate plot (b)

b<-attritevis::plot_attrition(data=df_b,

 freq = FALSE,

 treatment_q = "Q1",

 outcome_q = c("Q6", "Q7"),

 title = "(b) Pre-treatment Attrition",

 mycolors = c(Control="#000066",

 Treatment = "#CC0033"),

 7

 tline = FALSE,

 total = FALSE

)

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this

b<-b + geom_vline(xintercept = 5,

 color = "black",

 size = 1) +

 annotate(geom = "text",

 label = "Treatment Given",

 x = 5,

 y = 0.5,

 color = "black",

 angle = 90,

 vjust = 1.5)

b

#(c) Post-treatment Attrition (immediate)

df_c<-df

#First, we generate some general attrition at treatment

invisible(

sapply(sample(1:nrow(df_c), 410, 0.8*nrow(df_c)),function(x) {

 a <- sample(5:6,1)

 df_c[x,a:ncol(df_c)] <<- NA

}

))

#second, we add some attrition that's correlated with the treatment

#specifically, we want to demonstrate attrition that happens at a certain time

#to do so, we add a running var that will demonstrate time

df_c$no<-rownames(df_c)

df_c$Q6<-ifelse(df_c$Q1=="Treatment"&(df_c$no>115&df_c$no<373), NA,df_c$Q6)

df_c$Q7<-ifelse(is.na(df_c$Q6),NA,df_c$Q7)

df_c$Q8<-ifelse(is.na(df_c$Q6),NA,df_c$Q8)

 8

df_c$Q9<-ifelse(is.na(df_c$Q6),NA,df_c$Q9)

df_c$Q10<-ifelse(is.na(df_c$Q6),NA,df_c$Q10)

df_c$no<-NULL

c<-attritevis::plot_attrition(data=df_c,

 freq = FALSE,

 treatment_q = "Q1",

 outcome_q = c("Q6", "Q7"),

 title = "(c) Post-treatment Attrition (immediate)",

 mycolors = c(Control="#000066",

 Treatment = "#CC0033"),

 tline = FALSE,

 total = FALSE)

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this

c<-c + geom_vline(xintercept = 5,

 color = "black",

 size = 1) +

 annotate(geom = "text",

 label = "Treatment Given",

 x = 5,

 y = 0.5,

 color = "black",

 angle = 90,

 vjust = 1.5)

c

#(d) Post-treatment Attrition (prolonged)

df_d<-df

#Generate attrition at DV + after

invisible(

sapply(sample(1:nrow(df_d), 700),function(x) {

 a <- sample(6:10,1)

 df_d[x,a:ncol(df_d)] <<- NA

 9

}

))

d<-attritevis::plot_attrition(data=df_d,

 freq = FALSE,

 treatment_q = "Q1",

 outcome_q = c("Q6", "Q7"),

 title = "(d) Post-treatment Attrition (prolonged)",

 mycolors = c(Control="#000066",

 Treatment = "#CC0033"),

 tline = FALSE,

 total = FALSE

)

#note that treatment was administered in Q1 but `given` in Q5, so we manually input this

d<-d + geom_vline(xintercept = 5,

 color = "black",

 size = 1) +

 annotate(geom = "text",

 label = "Treatment Given",

 x = 5,

 y = 0.5,

 color = "black",

 angle = 90,

 vjust = 1.5)

d

require(grid)

#save all plots in one figure

plot2 <- ggarrange(a + rremove("ylab") + rremove("xlab"), b + rremove("ylab")

 + rremove("xlab"), c + rremove("ylab") + rremove("xlab"),

 d + rremove("ylab") + rremove("xlab"), # remove axis labels from plots

 10

 labels = NULL,

 ncol = 2, nrow = 2,

 common.legend = TRUE, legend = "top",

 align = "hv",

 font.label = list(size = 10, color = "black", face = "bold",

 family = NULL, position = "top"))

 annotate_figure(plot2, left = textGrob("Proportion of attrited", rot = 90, vjust = 1, gp
= gpar(cex = 1.5)),

 bottom = textGrob("Experiment Questions", gp = gpar(cex = 1.5)))

ggsave("Figures/plot2.png",

 width = 10,

 11

 height = 7,

 plot2)

3 Figure 4:
Vis miss plot.

plot3<- attritevis::vis_miss_treat(data=df_c,

 treatment = "Q5")

 12

ggsave("Figures/plot3.png",plot3)

attritevis Package: An R Vignette
This version: January 2023

1 Introduction
Attrition, the loss of study units from a sample, can often occur throughout an experimental study and
at times pose a threat to inference. There are several studies, and accompanying R packages, that
provide ex-post solutions to missingness such as double-sampling or extreme bounds. We provide a
visually based guidance to assessing the types of missingness a study may have with a particular eye
towards experimental and design adjustments a researcher can make after piloting a study.

2 Usage
• Visualizing survey attrition across treatment condition and over-time.
• Utilizing and comparing balance tests at precise moments in the survey.
• Incorporating estimation and visualization of Manski bounds for studies suffering from

problematic attrition.

3 Assumptions
• Data must be ordered by survey questions, i.e. if respondents answered Q1 before Q2, the

variable Q1 must appear before Q2 (i.e. in an earlier column) in the dataframe.
• When attrition is defined as completely leaving the survey. Hence, when attrition is reported in

the package it does not count skippers, i.e. respondents who skipped a question(s) but
continued later in the survey, as attrited. In the function plot_attrition users can count
skippers by setting y = “responded”.

• For balance tests, treatment and control conditions must be defined.

4 Functions

4.1 attrition()

 13

4.1.1 Description
• Converts survey data into a frame that includes:

o attrited – how many respondents attrited (left the survey) at each question.
o proportion – number of attrited respondents / number of respondents who entered

survey.
o prop_q – number of attrited respondents / number of respondents entering into the

question. - questions – question names.
o responded – how many respondents responded in each question.
o prop_r – number of respondents who responded / number of respondents who entered

survey.

4.1.2 Arguments

• data - a data.frame where variables are ordered by survey questions, such that earlier survey
questions appear in smaller valued columns.

4.2 attrition_table()

4.2.1 Description

• Yields same data.frame as function attrition, but converts it into a table. Allows to subset
table by treatment and control groups, which yields several tables by condition.

4.2.2 Arguments

• data - a data.frame where variables are ordered by survey questions, such that earlier survey
questions appear in smaller valued columns.

• treatment_q - a string character that corresponds to treatment variable. When specified, the
function yields several tables by condition.

4.3 plot_attrition()

4.3.1 Description

• Plots attrition or response in survey data over time.

4.3.2 Arguments
*data must be data.frame. Note that this function works only if the order of variables = order of
questions in the survey. Users must remove irrelevant observations, for instance individuals who did
not meet quotas, so as not to confuse them with attrited respondents. Note that using the qualtrics

 14

embedded data feature users can note which respondents failed an attention check or were removed
since they did not meet a quota.

*y is a character that corresponds to the Y axis. When y = attrited, attrition is plotted. When y=
responded responses are plotted. Default is y = attrited.

*freq is a logical argument that notes whether Y axis is a raw number or a proportion. Default is
freq=TRUE, which is the frequency of attrited OR responded respondents. When freq=FALSE Y axis is
the proportion of total N (attrited OR responded), calculated as number of attrited OR responded
divided by the number of respondents entering into the question.

*treatment_q is a character of name(s) of question(s) in which treatments were administered. Marked
in the plot with a red vertical line.

*outcome_q is a character of name(s) of outcome question(s). Marked in the plot with a blue vertical
line.

*mycolors is a character of color names to be used as values in scale_colour_manual argument in
ggplot. Default is mycolors=NULL, which defaults to greyscale. mycolors must be == length of the
unique values of the treatment_q variable. To use this argument, users should specify which color
corresponds to which factor (for example, treatment = "red").

*title is a character to be used for plot title.

*total is a logical argument that notes whether the total # of attrited/responded is plotted. Default is
TRUE. Argument can be changed to FALSE only when treatment_q is full.

*tline is a logical argument that allows users to remove treatment vline, default is tline=TRUE.

*outcomeline is a logical argument that allows users to remove outcome vlines, default is
outcomeline=TRUE.

4.4 balance_cov()

4.4.1 Description

• Tests whether specified covariates are balanced across specified treatment and control groups.
Output is a t-test if covariate is a numeric or integer, and a 2-sample proportion test if covariate
is a factor.

4.4.2 Arguments

• data - a data.frame, from which treatment and question are taken.
• treatment - a string character that corresponds to the name of the treatment variable. Note

that values of said variable must be specified as treatment and control.
• question - a string character that corresponds to the name of the point in survey (question),

for which balance test is required.
• factor - logical argument that specifies whether question is a factor. Default is factor =

FALSE (i.e. question is a numeric or integer).
• factor_name - character that corresponds to specific factor (i.e. female), if question is a factor

(i.e. sex).

 15

• p_adjust - Vector of numbers that correspond to p-values obtained in all tests. Use this to
adjust for p-values if running multiple tests.

4.5 balance_attrite()

4.5.1 Description

• Tests whether specified treatment causes attrition in a specified question. Output is a logistic
regression, regressing attrition (remain in survey=0, attrited=1) over specified treatment.

4.5.2 Arguments

• data - a data.frame, from which treatment and question are taken.
• treatment - a string character that corresponds to the name of the treatment variable. Note

that values of said variable must be specified as treatment and control.
• question - a string character that corresponds to the name of the point in survey (question),

for which balance test is required.

4.6 bounds()

4.6.1 Description

• Yields extreme (Manski) bounds or trimming (Lee) bounds, using the attrition package by
Alex Coppock.

4.6.2 Arguments

• data - a data.frame, from which treatment and DV are taken.
• treatment - a string character that corresponds to the name of the treatment variable. Note

that values of said variable must be specified as treatment and control.
• DV - a string character that corresponds to the name of the outcome variable.
• type - character that corresponds to the type of bounds required ("Manski" or "Lee"). Default

is type = "Manski".

4.7 vis_miss_treat()

4.7.1 Description

• Calls the vis_miss function from visdat package. We allow users to facet missingness by
conditions, creating several missingness maps per condition.

 16

4.7.2 Arguments

• data - a data.frame.
• treatment_q - a string character that corresponds to the name of the treatment variable. If

treatment_q = NULL, missingness map appears for all data, when treatment_q is not NULL,
missingness is faceted by condition.

5 Example
Let’s begin demonstrating the uses of attritevis, with a working example. We begin by installing the
package.

We load test data from Lo, Renshon, and Bassan-Nygate 2021 (study 5B) which is an experimental
survey study on whether peer-praise can encourage respondents to choose an empathy task.

The experiment manipulates peer-praise and measures empathy in a behavioral task. There are two
arms in the peer-praise randomization: peer-praise and no praise (control). In the first arm, a word
cloud of praise, drawn from real praise collected in a pilot study, is given for people who behave
empathetically, with a line of text about peer group average thermometer ratings towards people who
are empathetic – “Peers of yours on this platform have said they hold favorable feelings towards
people who engage in empathetic behavior, with an average of 7.9, on a scale of 0 (least favorable) to
10 (most favorable), That same peer group provided real feedback for empathetic behavior which is
pictured in the word cloud below”. The word cloud is presented in figure 1. Respondents in the control
condition do not receive any additional information.

Figure 1: Word cloud of real praise presented to treated respondents.

 17

Our outcome of interest is choosing to empathize with an image in a behavioral task. In the task,
subjects choose between two “cards” a FEEL and a DESCRIBE task, that correspond to an empathy or
objective task, in which they empathize/describe an image of a man. The cards are presented in figure
2. Below is a description of the survey, with information on the various variables collected.

Figure 2: Choice task FEEL and DESCRIBE cards.

After answering pre-treatment covariates, respondents in the study were asked to complete two
practice rounds of the main empathy task. After completing the practice rounds, respondents
complete three trials of the above mentioned tasks. Before each task, respondents are randomized
into treatment and control groups. Treated respondents received the light-touch peer-praise
treatment. During each trial, before respondents select between the FEEL and DESCRIBE tasks,
happiness, the hypothesized mechanism, is measured. Treatment variables are labeled treat1, treat2,
etc. Outcome variables, which are the choice-task card questions, are labeled card1, card2, etc.
Mediators, which are measures of the emotion happiness, are labeled Happy_1_1, Happy_1_2…
Happy_2_1, Happy_2_2… Happy_3_1, Happy_3_1, etc. After respondents complete all three trials post-
task and post-treatment covariates are collected. Importantly, the dataframe test_data is organized
based on the survey questions order. That is, if Q1 came before Q2 in the survey, the variable Q1
comes before the variable Q2 in the dataframe.

After loading the test data and ensuring that variables are ordered by survey questions, we may want
to transform our dataframe to an attrition dataframe, using the function attrition.

5.1 Attrition dataframe
attrition_data <- attritevis::attrition(test_data)

This function creates a frame that indicates, per question:

 18

- `attrited` -- how many respondents attrited (left the survey) at each question.

- `proportion` -- number of attrited respondents / number of respondents who entered surve
y.

- `prop_q` -- number of attrited respondents / number of respondents entering into the que
stion. - `questions` -- question names.

- `responded` -- how many respondents responded in each question.

- `prop_r` -- number of respondents who responded / number of respondents who entered surv
ey.

Using base R we can explore how many people attrited overall, and what proportion of the general
population this is.

sum(attrition_data$attrited) #How many respondents attrited overall?

[1] 129

sum(attrition_data$attrited)/nrow(test_data) #What proportion of the overall sample is thi
s? (0.21)

[1] 0.2067308

Next, we can look at specific variables, and learn whether respondents attrited. Let’s choose the
variable cards_a to demonstrate. This is a variable that notes whether respondents clicked the “FEEL”
or “DESCRIBE” button during their first practice round. Using base R we can extract the number of
attrited respondents, as well as the proportion of total N attrited, for this question.

attrition_data[attrition_data$questions == 'cards_a', 'attrited']

[1] 37

attrition_data[attrition_data$questions == 'cards_a', 'proportion']

[1] 0.06

We learn that at the question cards_a 37 respondents attrited from the survey. This is equivalent to
6% of the number of respondents who entered the survey at this question. Is this a lot though? Where
else do we see attrition in the study? To assess, we visualize attrition across the survey timeline.

5.2 Attrition table
We can further create that of this dataframe using the function attrition_table.

attritevis::attrition_table(test_data)

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 consent 624 1.00

 19

attrited prop_q proportion questions responded prop_r

3 0.00 0.00 age 621 1.00

0 0.00 0.00 sex 618 0.99

0 0.00 0.00 education 621 1.00

0 0.00 0.00 state 621 1.00

0 0.00 0.00 income 621 1.00

0 0.00 0.00 part_id 621 1.00

0 0.00 0.00 race 621 1.00

0 0.00 0.00 religion 621 1.00

1 0.00 0.00 attrition_1 620 0.99

6 0.01 0.01 attrition_2 614 0.98

37 0.06 0.06 cards_a 577 0.92

0 0.00 0.00 pa 553 0.89

0 0.00 0.00 pb_1 536 0.86

0 0.00 0.00 pb_2 536 0.86

0 0.00 0.00 pb_3 536 0.86

0 0.00 0.00 pc 534 0.86

 20

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 cards_b 534 0.86

0 0.00 0.00 p2a 522 0.84

0 0.00 0.00 p2b_1 515 0.83

0 0.00 0.00 p2b_2 515 0.83

0 0.00 0.00 p2b_3 515 0.83

0 0.00 0.00 p2c 515 0.83

0 0.00 0.00 treat1 577 0.92

0 0.00 0.00 Happy_1_1 514 0.82

0 0.00 0.00 Happy_1_2 514 0.82

0 0.00 0.00 Happy_1_3 514 0.82

0 0.00 0.00 cards1 505 0.81

0 0.00 0.00 X1a 502 0.80

0 0.00 0.00 X1b_1 502 0.80

0 0.00 0.00 X1b_2 502 0.80

0 0.00 0.00 X1b_3 502 0.80

0 0.00 0.00 X1c 502 0.80

 21

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 treat2 577 0.92

0 0.00 0.00 Happy_2_1 502 0.80

0 0.00 0.00 Happy_2_2 502 0.80

0 0.00 0.00 Happy_2_3 502 0.80

0 0.00 0.00 cards2 500 0.80

0 0.00 0.00 X2a 498 0.80

0 0.00 0.00 X2b_1 497 0.80

0 0.00 0.00 X2b_2 497 0.80

0 0.00 0.00 X2b_3 497 0.80

0 0.00 0.00 X2c 497 0.80

0 0.00 0.00 treat3 577 0.92

80 0.14 0.13 Happy_3_1 497 0.80

0 0.00 0.00 Happy_3_2 497 0.80

0 0.00 0.00 Happy_3_3 497 0.80

0 0.00 0.00 cards3 497 0.80

0 0.00 0.00 X3a 497 0.80

 22

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 X3b_1 497 0.80

0 0.00 0.00 X3b_2 497 0.80

0 0.00 0.00 X3b_3 497 0.80

0 0.00 0.00 post1 491 0.79

0 0.00 0.00 post2_7 497 0.80

0 0.00 0.00 post3 497 0.80

0 0.00 0.00 post4 497 0.80

0 0.00 0.00 post5 496 0.79

0 0.00 0.00 post6 497 0.80

1 0.00 0.00 post7 496 0.79

0 0.00 0.00 post8 496 0.79

0 0.00 0.00 post9 496 0.79

0 0.00 0.00 post10 496 0.79

0 0.00 0.00 post11_1 496 0.79

0 0.00 0.00 post11_8 496 0.79

1 0.00 0.00 post13_1 495 0.79

 23

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 post14_1 495 0.79

0 0.00 0.00 post15_1 493 0.79

0 0.00 0.00 post16_1 494 0.79

0 0.00 0.00 post17 495 0.79

0 0.00 0.00 ideology 495 0.79

0 0.00 0.00 trump_approval 495 0.79

0 0.00 0.00 pres_approval 495 0.79

We can also use the argument treatment_q to facet attrition table by condition. This is a character that
corresponds to a specific variable, which is where the treatment conditions were administered.

attritevis::attrition_table(data= test_data,

 treatment_q = "treat1"

)

[[1]]

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 control.consent 289 1.00

0 0.00 0.00 control.age 289 1.00

0 0.00 0.00 control.sex 287 0.99

0 0.00 0.00 control.education 289 1.00

0 0.00 0.00 control.state 289 1.00

 24

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 control.income 289 1.00

0 0.00 0.00 control.part_id 289 1.00

0 0.00 0.00 control.race 289 1.00

0 0.00 0.00 control.religion 289 1.00

0 0.00 0.00 control.attrition_1 289 1.00

0 0.00 0.00 control.attrition_2 289 1.00

0 0.00 0.00 control.cards_a 289 1.00

0 0.00 0.00 control.pa 278 0.96

0 0.00 0.00 control.pb_1 270 0.93

0 0.00 0.00 control.pb_2 270 0.93

0 0.00 0.00 control.pb_3 270 0.93

0 0.00 0.00 control.pc 268 0.93

0 0.00 0.00 control.cards_b 268 0.93

0 0.00 0.00 control.p2a 262 0.91

0 0.00 0.00 control.p2b_1 260 0.90

0 0.00 0.00 control.p2b_2 260 0.90

 25

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 control.p2b_3 260 0.90

0 0.00 0.00 control.p2c 260 0.90

0 0.00 0.00 control.cond_new 289 1.00

0 0.00 0.00 control.Happy_1_1 260 0.90

0 0.00 0.00 control.Happy_1_2 260 0.90

0 0.00 0.00 control.Happy_1_3 260 0.90

0 0.00 0.00 control.cards1 251 0.87

0 0.00 0.00 control.X1a 249 0.86

0 0.00 0.00 control.X1b_1 249 0.86

0 0.00 0.00 control.X1b_2 249 0.86

0 0.00 0.00 control.X1b_3 249 0.86

0 0.00 0.00 control.X1c 249 0.86

0 0.00 0.00 control.treat2 289 1.00

0 0.00 0.00 control.Happy_2_1 249 0.86

0 0.00 0.00 control.Happy_2_2 249 0.86

0 0.00 0.00 control.Happy_2_3 249 0.86

 26

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 control.cards2 248 0.86

0 0.00 0.00 control.X2a 246 0.85

0 0.00 0.00 control.X2b_1 246 0.85

0 0.00 0.00 control.X2b_2 246 0.85

0 0.00 0.00 control.X2b_3 246 0.85

0 0.00 0.00 control.X2c 246 0.85

0 0.00 0.00 control.treat3 289 1.00

43 0.15 0.15 control.Happy_3_1 246 0.85

0 0.00 0.00 control.Happy_3_2 246 0.85

0 0.00 0.00 control.Happy_3_3 246 0.85

0 0.00 0.00 control.cards3 246 0.85

0 0.00 0.00 control.X3a 246 0.85

0 0.00 0.00 control.X3b_1 246 0.85

0 0.00 0.00 control.X3b_2 246 0.85

0 0.00 0.00 control.X3b_3 246 0.85

0 0.00 0.00 control.post1 244 0.84

 27

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 control.post2_7 246 0.85

0 0.00 0.00 control.post3 246 0.85

0 0.00 0.00 control.post4 246 0.85

0 0.00 0.00 control.post5 246 0.85

0 0.00 0.00 control.post6 246 0.85

0 0.00 0.00 control.post7 246 0.85

0 0.00 0.00 control.post8 246 0.85

0 0.00 0.00 control.post9 246 0.85

0 0.00 0.00 control.post10 246 0.85

0 0.00 0.00 control.post11_1 246 0.85

0 0.00 0.00 control.post11_8 246 0.85

0 0.00 0.00 control.post13_1 246 0.85

0 0.00 0.00 control.post14_1 246 0.85

0 0.00 0.00 control.post15_1 244 0.84

0 0.00 0.00 control.post16_1 245 0.85

0 0.00 0.00 control.post17 246 0.85

 28

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 control.ideology 246 0.85

0 0.00 0.00 control.trump_approval 246 0.85

0 0.00 0.00 control.pres_approval 246 0.85

[[2]]

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 treatment.consent 288 1.00

0 0.00 0.00 treatment.age 288 1.00

0 0.00 0.00 treatment.sex 288 1.00

0 0.00 0.00 treatment.education 288 1.00

0 0.00 0.00 treatment.state 288 1.00

0 0.00 0.00 treatment.income 288 1.00

0 0.00 0.00 treatment.part_id 288 1.00

0 0.00 0.00 treatment.race 288 1.00

0 0.00 0.00 treatment.religion 288 1.00

0 0.00 0.00 treatment.attrition_1 288 1.00

0 0.00 0.00 treatment.attrition_2 288 1.00

0 0.00 0.00 treatment.cards_a 288 1.00

 29

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 treatment.pa 275 0.95

0 0.00 0.00 treatment.pb_1 266 0.92

0 0.00 0.00 treatment.pb_2 266 0.92

0 0.00 0.00 treatment.pb_3 266 0.92

0 0.00 0.00 treatment.pc 266 0.92

0 0.00 0.00 treatment.cards_b 266 0.92

0 0.00 0.00 treatment.p2a 260 0.90

0 0.00 0.00 treatment.p2b_1 255 0.89

0 0.00 0.00 treatment.p2b_2 255 0.89

0 0.00 0.00 treatment.p2b_3 255 0.89

0 0.00 0.00 treatment.p2c 255 0.89

0 0.00 0.00 treatment.cond_new 288 1.00

0 0.00 0.00 treatment.Happy_1_1 254 0.88

0 0.00 0.00 treatment.Happy_1_2 254 0.88

0 0.00 0.00 treatment.Happy_1_3 254 0.88

0 0.00 0.00 treatment.cards1 254 0.88

 30

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 treatment.X1a 253 0.88

0 0.00 0.00 treatment.X1b_1 253 0.88

0 0.00 0.00 treatment.X1b_2 253 0.88

0 0.00 0.00 treatment.X1b_3 253 0.88

0 0.00 0.00 treatment.X1c 253 0.88

0 0.00 0.00 treatment.treat2 288 1.00

0 0.00 0.00 treatment.Happy_2_1 253 0.88

0 0.00 0.00 treatment.Happy_2_2 253 0.88

0 0.00 0.00 treatment.Happy_2_3 253 0.88

0 0.00 0.00 treatment.cards2 252 0.88

0 0.00 0.00 treatment.X2a 252 0.88

0 0.00 0.00 treatment.X2b_1 251 0.87

0 0.00 0.00 treatment.X2b_2 251 0.87

0 0.00 0.00 treatment.X2b_3 251 0.87

0 0.00 0.00 treatment.X2c 251 0.87

0 0.00 0.00 treatment.treat3 288 1.00

 31

attrited prop_q proportion questions responded prop_r

37 0.13 0.13 treatment.Happy_3_1 251 0.87

0 0.00 0.00 treatment.Happy_3_2 251 0.87

0 0.00 0.00 treatment.Happy_3_3 251 0.87

0 0.00 0.00 treatment.cards3 251 0.87

0 0.00 0.00 treatment.X3a 251 0.87

0 0.00 0.00 treatment.X3b_1 251 0.87

0 0.00 0.00 treatment.X3b_2 251 0.87

0 0.00 0.00 treatment.X3b_3 251 0.87

0 0.00 0.00 treatment.post1 247 0.86

0 0.00 0.00 treatment.post2_7 251 0.87

0 0.00 0.00 treatment.post3 251 0.87

0 0.00 0.00 treatment.post4 251 0.87

0 0.00 0.00 treatment.post5 250 0.87

0 0.00 0.00 treatment.post6 251 0.87

1 0.00 0.00 treatment.post7 250 0.87

0 0.00 0.00 treatment.post8 250 0.87

 32

attrited prop_q proportion questions responded prop_r

0 0.00 0.00 treatment.post9 250 0.87

0 0.00 0.00 treatment.post10 250 0.87

0 0.00 0.00 treatment.post11_1 250 0.87

0 0.00 0.00 treatment.post11_8 250 0.87

1 0.00 0.00 treatment.post13_1 249 0.86

0 0.00 0.00 treatment.post14_1 249 0.86

0 0.00 0.00 treatment.post15_1 249 0.86

0 0.00 0.00 treatment.post16_1 249 0.86

0 0.00 0.00 treatment.post17 249 0.86

0 0.00 0.00 treatment.ideology 249 0.86

0 0.00 0.00 treatment.trump_approval 249 0.86

0 0.00 0.00 treatment.pres_approval 249 0.86

5.3 Visualizing attrition

5.3.1 Attrition timeline
We may want to visualize attrition across the survey, to look at all the survey questions at once. The
function plot_attrition allows us to plot attrition across survey questions, indicating where
treatment and outcome questions were collected.

There are several ways in which users can use this function. Simply plugging in the dataset into the
function yields a figure that plots the number of respondents that attrited (left the survey completely)
over each question in the study.

 33

attritevis::plot_attrition(test_data)

When users specify freq=FALSE, the y axis plots the proportion of attrited.

attritevis::plot_attrition(test_data,

 freq=FALSE)

 34

Users can further specify y="resonded" to account for response, rather than attrition. This argument
can be used with either freq=TRUE (default), or freq=FALSE, plotting response or proportion of
responded, accordingly.

attritevis::plot_attrition(test_data,

 y="responded")

 35

Using the outcome_q argument, users can specify where outcome questions were measure. These are
noted with gray vertical lines.

attritevis::plot_attrition(test_data,

 outcome_q = c("cards1", "cards2", "cards3"))

 36

When treatment_q, which corresponds to treatment variable, is not NULL, the plot both notes where
treatment was collected with a vertical line, and breaks down attrition by treatment conditions.

attritevis::plot_attrition(test_data,

 y = "responded",

 outcome_q = c("cards1", "cards2", "cards3"),

 treatment_q = "treat1")

 37

Color default is greyscale, but users can use the mycolors argument to specify which colors they want
to use to mark each conditions’ geom_line. The length of mycolors must be equal to the length of
unique(treatment_q). To use this argument, users should specify which color corresponds to which
factor. See below the running example:

attritevis::plot_attrition(test_data,

 y = "responded",

 outcome_q = c("cards1", "cards2", "cards3"),

 treatment_q = "treat1",

 mycolors = c(treatment = "#000066",

 38

 control = "#CC0033"))

Finally, users can make manual changes to the plot by removing the Total line (using the argument
total = FALSE), and by removing the treatment and/or outcome vertical lines (using tline=FALSE,
and/or outcomeline=FALSE, respectively). Generally, we recommend keeping the Total line unless
treatment is administered at with entrance to study.

attritevis::plot_attrition(test_data,

 y = "responded",

 outcome_q = c("cards1", "cards2", "cards3"),

 treatment_q = "treat1",

 39

 mycolors = c(treatment = "#000066",

 control = "#CC0033"),

 total = FALSE,

 outcomeline = FALSE,

 tline = FALSE

)

5.3.2 Vis miss

 40

Users can also visualize missingness with the vis_miss_treat() function that calls the vis_miss
function from the visdat package.

attritevis::vis_miss_treat(test_data)

attritevis allows users to facet missingness by conditions, creating several missingness maps per
condition, and marks treatment variable with a red vertical line.

attritevis::vis_miss_treat(test_data,

 treatment_q = "treat1")

 41

5.4 Balance tests
Once we have identified the specific survey points where attrition takes place, we want to conduct
balance tests at these specific points to ensure balance across treatment and control, and learn if (and
when) balance became an issue. We can do this using the functions balance_cov() and
balance_attrite().

5.4.1 Balance across covariates
Once we’ve identified whether (and when) attrition occurs in our survey, we want to know that our
treatment and control groups are balanced across covariates throughout the survey, to detect

 42

differential attrition. We can do this using the function balance_cov(), which we will demonstrate
with three covariates: age, sex, and ideology.

We begin with the covariate age, which was collected pretreatment and is a numeric variable. In order
to use the function balance_cov() we must define treatment and control arms under the treatment
variables. We define treat1 as the treatment variable, and age as the question.

unique(test_data$treat1)

[1] "treatment" "control" NA

attritevis::balance_cov(data = test_data,

 treatment = "treat1",

 question = "age")

Welch Two Sample t-test

data: treat_data$question1 and control_data$question1

t = -0.32688, df = 568.57, p-value = 0.7439

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.002600 1.431137

sample estimates:

mean of x mean of y

37.42361 37.70934

The output is a t-test that determines whether there is a difference between the average age of the
control group and the treatment group. We learn that age is balanced across treatment and control
groups, with a mean of approximately 37.4 years old in treated respondents and 37.7 in controled
respondents (p=0.7).

We can also use the function balance_cov() when the covariate (question) is a factor, but we must
specify which factor we are interested in. For example, let’s say we want to test whether at the
question sex in the survey missingness created observable differences across treatment and control
groups. Sex is a factor variable with two factors: female and male. We can look at whether the
proportion of female still remains similar across groups. To do so, we must determine that factor =
TRUE and specify the factor_name (in this case, female).

attritevis::balance_cov(data = test_data,

 treatment = "treat1",

 question = "sex",

 factor = TRUE,

 factor_name = "female")

2-sample test for equality of proportions with continuity correction

 43

data: x out of n

X-squared = 1.1305, df = 1, p-value = 0.2877

alternative hypothesis: two.sided

95 percent confidence interval:

-0.12931498 0.03623038

sample estimates:

prop 1 prop 2

0.3576389 0.4041812

The output is a 2-sample proportion test. We learn that sex is also balanced between treatment and
control, with similar proportions of females across the groups (p=0.3).

There are certain post-treatment variables for which we may want to ensure balance across treatment
and control as well. Note, however, that these should be variables that we hypothesize would stay
stable after treatment. For example, we occasionally include demographic questions at the end of the
survey to avoid survey fatigue before treatments. In our running example, the ideology question was
collected post-treatment, but we expect it to stay stable across treatment and control.

attritevis::balance_cov(data = test_data,

 treatment = "treat1",

 question = "ideology")

Welch Two Sample t-test

data: treat_data$question1 and control_data$question1

t = 1.023, df = 492.91, p-value = 0.3068

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.1660012 0.5266633

sample estimates:

mean of x mean of y

3.879518 3.699187

If users run several balance tests, we recommend adjusting p-values. balance_cov allows users to do
so by specifying the p-values of the tests they ran (p_adjust).

In our running example, since we ran three balance tests (with ideology, sex, and age), we want to
adjust our p-values:

attritevis::balance_cov(data = test_data,

 treatment = "treat1",

 44

 question = "ideology",

 p_adjust = c(0.7,0.3,0.3))

Welch Two Sample t-test

data: treat_data$question1 and control_data$question1

t = 1.023, df = 492.91, p-value = 0.3068

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.1660012 0.5266633

sample estimates:

mean of x mean of y

3.879518 3.699187

Original_p….p_adjust Adjusted_p….a

0.7 0.70

0.3 0.45

0.3 0.45

5.4.2 Balance across attrition
Next, we can check whether our treatment is correlated with attrition at any moment in the survey.
The balance_attrite() function converts the specified question into a binary variable such that
attrition = 1, and remaining in survey = 0, and runs a lositic regression (regressing the specified
question over the specified treatment) to examine whether treatment affects attrition.

Using our visualization, we identified that attrition occurs at the post-treatment question Happy_3_1.
We can use the function balance_attrite(), to examine whether our treatment caused attrition at
this point in the survey:

attritevis::balance_attrite(data = test_data,

 treatment = "treat1",

 question = "Happy_3_1")

Call:

glm(formula = question1 ~ treatment1, family = binomial(link = "logit"),

 45

data = data2)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.5676 -0.5676 -0.5244 -0.5244 2.0259

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.7441 0.1653 -10.552 <2e-16 ***

treatment1treatment -0.1704 0.2415 -0.706 0.48

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 464.49 on 576 degrees of freedom

Residual deviance: 463.99 on 575 degrees of freedom

(47 observations deleted due to missingness)

AIC: 467.99

Number of Fisher Scoring iterations: 4

We learn that our treat1 does not affect attrition in variable Happy_3_1.

6 Simulated data
As we demonstrated above, attrition doesn’t seem to pose a threat to inference in our dataset. But
what does it look like when attrition is an issue? We simulate attrition on test_data to demonstrate
what this would look like.

6.1 Treatment causes attrition
In a toy example (test_sim), suppose respondents enter a survey (Q1-Q10), where treatment is
assigned at “Q5”. We generate attrition such that treatment is causing respondents to drop out of the
survey right after treatment. We might see something like this if respondents are particularly taxed by
a treatment in the survey and therefore more likely to drop out after receiving treatment.

6.1.1 Plot
We visualize attrition using the plot_attrition() and vis_miss_treat() functions.

 46

attritevis::plot_attrition(test_sim,

 treatment_q = "Q5",

 outcome_q = c("Q7", "Q8", "Q9"),

 freq = FALSE,

 mycolors = c(treatment = "#000066",

 control = "#CC0033")

)

 47

attritevis::vis_miss_treat(test_sim, treatment_q = "Q5")

We learn that attrition mostly occurs after Q6, and that treated respondents seem to be attriting more.

6.1.2 Balance
We learn that most respondents attrite at the post-treatment question Q6, and conduct a balance test.
Note that Q6 is an outcome, and we expect our treatment to affect it. It thus does not make sense to
use the balance_cov() function. Instead, we want to examine whether our treatment caused attrition,
and thus use the function balance_attrite():

 48

attritevis::balance_attrite(data = test_sim,

 treatment = "Q5",

 question = "Q6")

Call:

glm(formula = question1 ~ treatment1, family = binomial(link = "logit"),

data = data2)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.5481 -0.5481 -0.2974 -0.2974 2.5062

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0964 0.2479 -12.489 < 2e-16 ***

treatment1treatment 1.2767 0.2888 4.421 9.82e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 469.71 on 772 degrees of freedom

Residual deviance: 447.08 on 771 degrees of freedom

(227 observations deleted due to missingness)

AIC: 451.08

Number of Fisher Scoring iterations: 5

We learn that treated respondents are more likely to attrite, treatment is positively associated with
attrition and is statistically significant.

6.1.3 Bounds
Next, we use the function bounds() to to get extreme value (Manski) bounds. This function calls the
function estimator_ev from the attrition package by Alex Coppock. treatment is the assignment
indicator (Z). DV is the outcome of interest (Y). Our bounds() function removes respondents who
attrited pre-treatment and calculates R (the respose indicator variable) based on missingness on the
DV (missing=0, response=1), based on the assumptions drawn by Manski.

 49

The default for the bounds type is type = "Manski", but we can also specify the type of bounds such
that type = "Lee" to get Trimming (Lee) bounds. Since we cannot defy the monotonicity assumption,
Lee bounds cannot be yielded here, however we demonstrate the use of type = "Lee" in the next
section.

6.2 Control causes attrition
We repeat this process, but instead we look at a case where control causes attrition in test_sim2. We
might see something like this if positive emotions (like happiness) are ramped up with treatment,
making attrition less likely.

6.2.1 Plot
We visualize attrition using the plot_attrition() and vis_miss_treat() functions.

attritevis::plot_attrition(test_sim2,

 treatment_q = "Q5",

 outcome_q = c("Q7", "Q8", "Q9"),

 freq = FALSE,

 mycolors = c(treatment = "#000066",

 control = "#CC0033")

)

 50

attritevis::vis_miss_treat(test_sim2, treatment_q = "Q5")

 51

We learn that attrition mostly occurs after Q6, and that treated respondents seem to be attriting more.

6.2.2 Balance
We learn that most respondents attrite at the post-treatment question Q6, and conduct a balance test.
Note that Q6 is an outcome, and we expect our treatment to affect it. It thus does not make sense to
use the balance_cov() function. Instead, we want to examine whether our treatment caused attrition,
and thus use the function balance_attrite():

attritevis::balance_attrite(data = test_sim2,

 treatment = "Q5",

 52

 question = "Q6")

Call:

glm(formula = question1 ~ treatment1, family = binomial(link = "logit"),

data = data2)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.5092 -0.5092 -0.3141 -0.3141 2.4633

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.9775 0.1524 -12.974 < 2e-16 ***

treatment1treatment -1.0071 0.2856 -3.526 0.000422 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 456.45 on 776 degrees of freedom

Residual deviance: 442.62 on 775 degrees of freedom

(223 observations deleted due to missingness)

AIC: 446.62

Number of Fisher Scoring iterations: 5

We learn that treated respondents are more likely to attrite, treatment is positively associated with
attrition and is statistically significant.

6.2.3 Bounds
Next, we use the function bounds() to to get extreme value (Manski) bounds and lee sharp bounds.

attritevis::bounds(data = test_sim2,

 treatment = "Q5",

 DV = "Q8")

ci_lower ci_upper low_est upp_est low_var upp_var

-0.296727542 0.310514515 0.006893486 0.006893486 0.023997584 0.023997584

#lee sharp

 53

attritevis::bounds(data = test_sim2,

 treatment = "Q5",

 DV = "Q7",

 type = "Lee")

upper_bound lower_bound Out0_mono Out1L_mono Out1U_mono

0.34041298 0.10240873 3.92625369 4.02866242 4.26666667

control_group_N treat_group_N Q f1 f0

339.00000000 327.00000000 0.03790379 0.12566845 0.15880893

pi_r_1 pi_r_0

0.87433155 0.84119107

